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Comments on the Martingale Convergence Theorem,
- 2

S.D.Chatterji

Let (so 4 @ ,P) be a probability space and let X be a Banach space. A sequence of
Y-valued “Sochner-integrable random variables fn on & will be said to form a martin-

sale with respect to the sub algebras Cin n=1,2,00., a_, cQ

n’ ] (in short fn, X

n
is a martingale ) if
a
a - >
E Ther = Tn n =,

a
wnere E  is the conditional expectation operator with respect to the & —algebra Cﬁn.

It is known that these operators are well-defined for arbitrary Banach-space-valued

integrables functions., In the following it will be assumed that the algebra

= GS/ [}Il generates the & -algebra # . The general case can be handled via

n="1
standard reduction to this case.

Ly main concern will be proving almost everywhere (a.e.) convergence theorems for
martingales. For the sake of brevity, I shall limit myself in this talk to considering
only the following statements:
a
(Sq): If f =E % f +then 1im f. = f a.e. (strong limit in X)
n n
n--co
(52): If {fn,(?ng is a martingale and the fn's are uniformely integrable (i.e.

lim j”an . 1{_an H>N} 4P = O uniformely inn >1 ) then If

o such that
N+

lim fn = T

a0 0 a.e.

(8y): It [£, ] is a martingale with sup EC(Il £ !l )< o then I £ such that

ns00 n QL ae€e
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In § 2 I shall prove that (Sq) is always true. In this generality, the result is proved
by othersmethods in Chatterji (2b) and also in A.I. and C.I. Tulcea (6). The present
prove, paralleling the proof in the scalar-valued case as in Billingsley (1), is as

simple ( possibly, some would wish to say trivial ) as ome could wish for.

In § 3, I shall prove the main theorem of thid paper viz, that if X satisfies the
following (RN) condition (RN for Radon-Nikodym) then (83) ( and hence trivially (82))

is valid for all martingales. The condition referred to is:

(RN): Every G -additive X-valued set function p on & of bounded variation with the pro-
perty that y; , the variation Of/J , 18 absolutely continuous with respect to P(YUQ'P)
can be represented as the indefinite integral of a X-valued Bochner-integrable func-
tion. The non-negative measure VF is defined as follows:

n

n
v,,(A)=sup;Z ”/u (Al :AiAj=g5 y A € B » L A; = A, n>1}
i=1

i=1
The implication (RN) = (SB) is more general than the statements obtainable from (6),.
1t also follows that (SB) is valid for reflexive X separable dual spaces X, statements
explicitly made in (6). For reflexive X, (82) (weaker than (83)) was proved by different
methods in (2a,b) and by Scalora (5). That some condition on X is necessary for the vali-

dity of (S ) or (S ) ist demonstrated by the counterexample in (2a). Here a martingale £,

is constructed whlch takes values in L (0,1) and which does not converge in any sense,

weak or strong, anywhere, althoug amongst other things, //fnfl =1 for all n=>1.

In § 4, it is shown that the (RN) condition is alsonecessary if & is seperable
(generared by a denumberable class of subsets). lore precisely, in this case (SZ)’

(83) and (BRN) are eqguivalent conditions.

§ 2: The main probabilistic tool is the following lemmat

Lemma 13

For any martingale {fn,éyn }, if A e Cln and ¢ > O then

o
P{A; sup Isef¢d sup foHdP
{ k;no k } kbno A k




rne lemma is known and an easy consequence of the fact that l[fniéis a submartingale.,
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An
\s]) ¢ For any space X, lim B

. f=f a.e. (P).
ns00

a

s}
Sketch of proof: If £ is measurable & Lj CXD then (Sq) is trivial since E Df=f
n=1

cor sufficiently large n., for a general f, I Q:measurable A such that

E(HEf~-fU) < ¢

The following obvious inequality

- a o & o a,
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coupled with lemma 1 leads us to (Sq) quite smoothly.

§ 3: Given a martingale gfn,(yng y define the set—functions'; on Cin as follows:

tw - )

n (4) = f, db.

A

The martingale property is equivalent to the property that
vo CaLn+’l

function/Jon A is an X~-valued finitely additive set-function. The set-function is of

Moois : Y
neq 18 an extension of n

00
o Hence for any Ae 0= |/ (m'n7 lim ,J(A) = fJ(A) exists. The set-
n="1 n+o0

bounded variation if f sup j?lfn!ldP < o00. The main difficulty in proving martingale
n>-1
convergence theorems is thath may not be ¢ -additive. The following lemma gives a

way oute
Lemma 23

Let P be a probability measure on the algebra Clof subsets of a space &2 and H a

finitely additive X-valued set~function of bounded variation an Ol ¢ Then
ILJ = r/‘ + G

where p,s are both of bounded variation and n is a finitely additive set-function




bach that V,, (the variation of »n ) is singular with respect to P (i.e. givene, d> 0,

JA e Oty P(AY<E, V? (A') < & ) and 6 is a 6 -additive set-function such that Vg is

absolutely continuous with respect to P (i.e. givene>0 ,3 &> 0,P(A)<E = Vo (A) < & )

The main idea behind the proof of the lemma will be sketched. One transfers P and ~ to
the space (S, ¥ ’I) where 8 is a totally disconnected compact Hausdorff space and Z’I
is the algebra ofclopen sets in S, 21 being isomorphic to Ot « It turns out that P
and p are 6 -additive on 21 and hence can be extended to the & —-algebra > > gene-
rated by = . (These are standard methods in this sort of work; see e.g. (3) pp.312-
13 ). On these extended measures on 22 apply the Leoesgue-decomposition theorem as
proved by Rickart (4) and then retrace the way back through 2-1 to (X to obtain the

decomposition indicated in the lemma.
With the help of lemma 2, I shall now prove the main theorem of this talk:
Theorem 22

If X satisfies the (RN) property with respect to P on A then any martingale

{fn, @Ln} with igﬁ) J }jfnJ!dP < 0o converges i.e. J f such that

lim f =17 a.8. (P)
B200 n 00

Sketch of the proof: Let H be as before and » ,6 as in lemma 2., g restricted to @ln
is an integral. ¢, being absclutely continuous with resoect to P, is also an integral

since X has the (RN) property.
Let ¢(4) =f h &P A€ X .and 6(A) =6 (A =/hndP Ae&n
A A

an

Clearly h, = [ h.

Hence 7 restricted to O[n is also an integral i.e.

YZ(A) = f?n(A) = L[;gn ap A€ Qn
In other words, f = g + h
n n n

where gn,hn are also martingales with respect to a n*
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Moreover hn is £ © h and hence theorem 1 ensures the convergence of hn to a limit.
I shall now show that lim g, = 0 a.s. (P).

Given 1> ¢, &> 0, find A € & ( and hence AeOln for some no) such that

, de °
P(AT) + V,(8) < % .

Now
P g H>¢ = P{A g I} P{ A;
{igg &n } (A suilgibes { sw gyl > e }
o] o] o]
< éf-+§ sup J/HganP (by lemma 1)
’ nyng A
<%§+%V,?(A)<é§-c’—+g<6.

This is clearly enough to show that lim =0 a.s. (P).

g

§ 4. In this section, the main thing is the following lemma for real-valued submar—

tingales:

Lemma 33
If{ g,y @ | is a positive submartingale with sup E (g,) < oo such that
n»1
0 0]
Iy (A) = 1lim g dP, A€ O = O, id a 0O - additive P-con-
n>w A n n=1

tinuous set-function then gn's are uniformely integrable,

Sketch of proof: If 8> 0 is a martingale then it is easy. In general 3 hn a

martingale so that O< g, <h and such that{hnK induces the same p . Hence the lemma.

heorem 32
If B is separable then (52)3,» (RN) . Hemce in this case (82)<=> (83) & (RN).
Sketch of proof: Let & be generated by AjyAsyeee and O[n = the ¢ -algebra

generated by A’I""‘An' Given a set—function p on 4 satisfying the condition in (EN),

the martingale {fn, (!5 induced by p is such that /[ £, !l satisfies the conditions




¢

*6p Lemma 3. Hence (82) implies the convergences of fn to fa)' From hereon it is trivial

té show, that flis the indefinite integral of foo'

.

Notes

In the real-valued case the general martingale convergence theorem S3 can be deduced

rapidly from S,| by the following sequence of arguments:

(I (Sq) = (82) because f uniformely integrable implies that 3 h, such that

£ n T f weakly in L1 for some f.
k
@h Gy Ap
Hence E f n T E f weakly., But E f n = fn for large Dy e Hence
k k=00 k
%

E f = fn etc. Next

(II) every uniformely integrable submartingale converges: this follows from (i) via the

Doob-decomposition for submartingales.

(II1) EBvery positive martingale fn converges since e_fn is a uniformely bounded semi-

martingale,

(IV) An arbitrary martingale fn with sup E f; < @ converges because it is the dif-

ference of two positive martingales and (I1I).

From here the same theorem for submartingales can also be easily obtained.
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